

PGM - Homework 1

Question 1: Consider a cylindrical water well with a radius of 1 meter. We drop stones from the top-centre of the well. But due to air flow inside the well the stones will not exactly land on the centre at the bottom. The bottom of the well is a circular region represented as

$$C = \{(x, y) \mid x^2 + y^2 \le 1\}.$$
(1)

Let the random variables X and Y represent the coordinates of where the stone lands, characterized by the probabilistic density function $f: C \to \mathbb{R}$ with the following form:

$$f_{X,Y}(x,y) = \alpha \exp(x^2 + y^2) \tag{2}$$

- 1. What is the value of α ? (Hint: You may use polar coordinates.)
- 2. What is the probability of a stone landing in the region

$$S = \{(x,y) \mid \sqrt{x^2 + y^2} \le \frac{1}{3}\}.$$
(3)

3. What is the probability of a stone landing inside

$$S = \{(x,y) \mid \frac{1}{3} \le \sqrt{x^2 + y^2} \le \frac{2}{3}\}.$$
 (4)

Question 2: Consider the following joint probability mass function (PMF) $f_{I,N}: \{1,2,3,\ldots\} \times \{0,1,2,3,\ldots\} \rightarrow [0,1]:$

$$f_{I,N}(i,n) = P(I=i,N=n) = \frac{\alpha}{i^2 n!}$$
 (5)

where $i \in \{1, 2, 3, \dots\}$ and $n \in = \{0, 1, 2, \dots\}$.

1. Derive the value of α ?

Some of the well-known series listed here might help: https://en.wikipedia.org/wiki/Series_(mathematics)

- 2. Obtain the formulae for the marginal distributions $f_I(i)$ and $f_N(n)$.
- 3. Obtain the formulae for the conditional distributions $f_I(i | N = n)$ and $f_N(n | I = i)$.
- 4. Are the random variables I and N independent? Why?

Question 3: Consider the following joint PMF $f_{M,N}$: $\{0,1\} \times \{1,2,3\}$:

m	n	$f_{M,N}(m,n)$
0	1	0.10
0	2	0.18
0	3	0.12
1	1	0.14
1	2	0.28
1	3	0.18

- 1. Derive $f_M(m)$, $f_N(n)$, $f_M(m | N = n)$ and $f_N(n | M = m)$.
- 2. Are M and N independent? Why?

Question 4: Assume that the joint distribution

$$P(a, b, c) = \Pr(A = a, B = b, C = c)$$

can be written as

$$P(a, b, c) = \phi(a, b) \psi(a, c),$$

where $\phi(a, b) > 0$ and $\psi(a, c) > 0$ for all values of a, b, c.

1. Prove that B and C are conditionally independent given A.

Question 5: Consider the random variables A, B, C takeing on values in sets $D_A = \{0, 1\}, D_B = \{-1, 0, 1\}, D_C = \{1, 2, 3, 4\}$, respectively. Derive the minimum number of *free* parameters to fully derscribe each of the following distributions

- P(A, B, C)
- $P(A \mid B)$
- $P(B \mid A)$
- $P(B \mid A)$
- $P(A \mid B, C)$
- $P(C \mid A, B)$
- P(A, B, C) when we know that A, B, and C are mutually independent.
- P(A, B, C) when we know that B is independent of C given A.
- P(A, B, C) when we know that B is independent of C if A = 0.
- P(A, B, C) when we know that Pr(A=a, B=x, C=y) = Pr(A=a, B=y, C=x).
- P(A, B, C) when we know that A, B, and C are mutually independent, and Pr(C=x) = Pr(B=x) for all $x \in \{1, 2, 3\}$.