PGM - Homework 1

Question 1: Consider a cylindrical water well with a radius of 1 meter. We drop stones from the top-centre of the well. But due to air flow inside the well the stones will not exactly land on the centre at the bottom. The bottom of the well is a circular region represented as

$$
\begin{equation*}
C=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\} . \tag{1}
\end{equation*}
$$

Let the random variables X and Y represent the coordinates of where the stone lands, characterized by the probabilistic density function $f: C \mapsto \mathbb{R}$ with the following form:

$$
\begin{equation*}
f_{X, Y}(x, y)=\alpha \exp \left(x^{2}+y^{2}\right) \tag{2}
\end{equation*}
$$

1. What is the value of α ? (Hint: You may use polar coordinates.)
2. What is the probability of a stone landing in the region

$$
\begin{equation*}
S=\left\{(x, y) \left\lvert\, \sqrt{x^{2}+y^{2}} \leq \frac{1}{3}\right.\right\} . \tag{3}
\end{equation*}
$$

3. What is the probability of a stone landing inside

$$
\begin{equation*}
S=\left\{(x, y) \left\lvert\, \frac{1}{3} \leq \sqrt{x^{2}+y^{2}} \leq \frac{2}{3}\right.\right\} . \tag{4}
\end{equation*}
$$

Question 2: Consider the following joint probability mass function (PMF) $f_{I, N}:\{1,2,3, \ldots\} \times\{0,1,2,3, \ldots\} \rightarrow[0,1]:$

$$
\begin{equation*}
f_{I, N}(i, n)=P(I=i, N=n)=\frac{\alpha}{i^{2} n!} \tag{5}
\end{equation*}
$$

where $i \in\{1,2,3, \cdots\}$ and $n \in=\{0,1,2, \cdots\}$.

1. Derive the value of α ?

Some of the well-known series listed here might help: https://en.wikipedia.org/wiki/Series_(mathematics)
2. Obtain the formulae for the marginal distributions $f_{I}(i)$ and $f_{N}(n)$.
3. Obtain the formulae for the conditional distributions $f_{I}(i \mid N=n)$ and $f_{N}(n \mid I=i)$.
4. Are the random variables I and N independent? Why?

Question 3: Consider the following joint PMF $f_{M, N}:\{0,1\} \times\{1,2,3\}$:

m	n	$f_{M, N}(m, n)$
0	1	0.10
0	2	0.18
0	3	0.12
1	1	0.14
1	2	0.28
1	3	0.18

1. Derive $f_{M}(m), f_{N}(n), f_{M}(m \mid N=n)$ and $f_{N}(n \mid M=m)$.
2. Are M and N independent? Why?

Question 4: Assume that the joint distribution

$$
P(a, b, c)=\operatorname{Pr}(A=a, B=b, C=c)
$$

can be written as

$$
P(a, b, c)=\phi(a, b) \psi(a, c),
$$

where $\phi(a, b)>0$ and $\psi(a, c)>0$ for all values of a, b, c.

1. Prove that B and C are conditionally independent given A.

Probabilistic Graphical Models

Question 5: Consider the random variables A, B, C takeing on values in sets $D_{A}=\{0,1\}, D_{B}=\{-1,0,1\}, D_{C}=\{1,2,3,4\}$, respectively. Derive the mininum number of free parameters to fully derscribe each of the following distributions

- $P(A, B, C)$
- $P(A \mid B)$
- $P(B \mid A)$
- $P(B \mid A)$
- $P(A \mid B, C)$
- $P(C \mid A, B)$
- $P(A, B, C)$ when we know that A, B, and C are mutually independent.
- $P(A, B, C)$ when we know that B is independent of C given A.
- $P(A, B, C)$ when we know that B is independent of C if $A=0$.
- $P(A, B, C)$ when we know that $\operatorname{Pr}(A=a, B=x, C=y)=\operatorname{Pr}(A=a, B=y, C=x)$.
- $P(A, B, C)$ when we know that A, B, and C are mutually independent, and $\operatorname{Pr}(C=x)=\operatorname{Pr}(B=x)$ for all $x \in\{1,2,3\}$.

